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Abstract. We calculate the spectral functions, the band structure and the density of states of the 2D
attractive Hubbard model in the intermediate coupling regime (i.e. the crossover regime between BCS
theory and Bose-Einstein Condensation) using a grand canonical quantum Monte-Carlo approach and a
maximum entropy procedure. The evolution of the spectral properties as a function of temperature is
discussed. In particular, on lowering the temperature, we find a splitting of the single band present at high
temperatures into several distinct branches, the number of which depends on the temperature.
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1 Introduction

The problem of a crossover from a weak coupling BCS
(Bardeen-Cooper-Schrieffer, [1]) picture of Cooper pair
formation and condensation at a critical temperature to
a Bose-Einstein condensation (BEC, [2]) of preformed
(local) pairs has recently attracted great attention. The
motivation to study this problem comes from experimen-
tal observations regarding unusual properties of the high-
Tc cuprate superconductors. Particularly interesting in
this respect are recent experiments showing a pseudo-gap
structure in the normal-state density of states of under-
doped cuprates that persists almost up to room tempera-
ture [3–7]. A further unusual property different from con-
ventional BCS-type superconductors is the extreme short
coherence length (of the order of some lattice constants)
of the pairs in the superconducting state, much smaller
than in usual superconductors (where it is of the order of
several thousand Å).

To gain insight into the electronic properties of the
normal and superconducting states we explore the effect
of electron correlations, and in particular pair formation
and appearance of superconducting correlations, on the
density of states, the spectral densities and the band struc-
ture in a rather simplified lattice model system, the two-
dimensional Hubbard model with local attractive interac-
tion (2AHM). Although this model is unlikely to provide
a microscopic description of high-temperature supercon-
ductivity, it serves rather well to reveal the effect of cor-
relations on measurable properties. It is evident that the
local attractive onsite density-density interaction term fa-
vors double occupancy of sites and hence the formation of
(s-symmetric) pairs. If these pairs of charge 2e are mobile,
superconductivity will occur below a certain temperature.
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Fig. 1. “Sketch” of the crossover regime along the coupling
strength axis U for fixed density ρ. Shown are qualitative
curves for the critical temperature Tc, as obtained e.g. by QMC
(solid line), as well as the BCS and BEC limits (dashed lines).
Additionally, a T ∗ curve is drawn (dark gray curve), indicat-
ing the pair formation scale in contrast to the condensation
temperature Tc.

This model exhibits a pronounced crossover (see illustra-
tion in Fig. 1) from a weak coupling regime, where the
essential features of the superconducting state are well
described by a BCS theory, to a strong coupling regime,
properly described by a BE condensation of local, pre-
formed (real-space) pairs. Because of its conceptual sim-
plicity, the attractive Hubbard model allows an easy in-
vestigation of the crossover from weak to strong coupling,
from extended to local pairs, from BCS to BEC, just by
tuning the interaction parameter U (Fig. 1), which acts as
a control parameter for the phase transition line in analogy
to the carrier doping in e.g. the high temperature super-
conducting cuprates. At sufficiently low T an instability
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of the Fermi sea towards superconductivity occurs, the
transition is essentially mean-field in character, see e.g.
[8–10] and references therein. This link of the weak cou-
pling regime with BCS superconductivity has been pro-
vided by Schmitt-Rink and Nozières [11]. The evolution
from Cooper-pair superconductivity for small U to local
pair superconductivity for large U is smooth.

In the present work the electronic carrier density ρ
(“electron doping”, charge carriers per site and spin) is
assumed to be finite and fixed, away from half-filling. In
Figure 1 we sketch a qualitative T -U -phase diagram, as
discussed e.g. in [10], and indicate the Tc(U) curve as ob-
tained by QMC together with the BCS and BEC limits.
Moreover, we plot in this figure also a T ∗-curve, giving
the pair formation energy scale. Since at both endpoints
of this phase transition line, the U = 0 and the U → ∞
limit, Tc vanishes, it is evident that there must be an op-
timal Tc for an intermediate value of U [10]. For U = 0
we have a normal metal. For U → ∞ the electrons form
bound pairs which are immobile since they can only move
via virtual ionization with an infinite energy barrier. On
the lattice, Tc vanishes in this limit, while in the contin-
uum limit it remains finite [12,13]. This difference is due to
the absence of a pair hopping term when working on a lat-
tice. For increasing coupling strength Tc is suppressed by
fluctuations down from the BCS value TBCSc , and TBCSc

becomes rather a mere pair formation scale. TBCSc is no
longer connected to the condensation temperature, where
long range order is established.

A large number of studies has been published dis-
cussing several aspects of this crossover. Here we will pro-
vide an extension of the earlier work, we put special em-
phasis on the discussion of the spectral properties and
their temperature evolution in the intermediate coupling
regime, which is particularly difficult to access by any kind
of approximative method. In the intermediate coupling
regime the physics will be dominated by the interplay
between quasiparticles and bound pairs, leading to non-
trivial behavior. We therefore concentrate on the investi-
gation of the attractive Hubbard model with the quantum
Monte-Carlo (QMC) approach, which has the potential to
treat this type of strongly correlated system on a lattice
numerically exactly, allowing us to go far beyond certain
approximative methods.

2 The attractive Hubbard model

We consider the 2D attractive Hubbard model (2AHM,
“negative-U model”) on a square lattice:

H = −t
∑
〈ij〉σ

(c†iσcjσ + h.c.)− U
∑
i

ni↑ni↓ − µ
∑
iσ

niσ,

(1)

where c†iσ (ciσ) denote fermionic creation (annihilation)
operators at site i with spin σ, and t is the kinetic term
between two neighboring sites, which serves as an energy
unit throughout the paper. The limit 〈ij〉 restricts the sum

to next-neighbors, U denotes the interaction (“coupling”),
which is chosen to be attractive, and µ is the chemical
potential. We consider the intermediate coupling regime
W/2 ≤ U ≤ W , W being the bandwidth (W = 8t in
D = 2). Away from half-filling the 2AHM is believed to
undergo a Kosterlitz-Thouless (KT) [14] transition.

In the free case (U/t = 0) we have the well-known
dispersion relation for the D-dimensional system,

ε(k) = −2t
D∑
α=1

cos(kα)− µ. (2)

With the exception of the critical endpoints and ρ = 0.5
(ρ is the density of electrons per site and per spin, i.e.
ρ = 1 corresponds to the fully occupied lattice with 2 elec-
trons of opposite spin at each site), the phase transition
line is supposed to be a line of D-dimensional XY criti-
cal points, while the special point ρ = 0.5 corresponds to
a D-dimensional XYZ critical point. For this reason, the
transition temperature vanishes in 2D at ρ = 0.5 (half-
filling). There one finds a coexistence of superconduct-
ing and long-range charge-density correlations, which, in
2D, drive the effective KT transition temperature to zero
(T 2D
KT (ρ = 0.5) = 0), accounting for another critical point

ρc,2D = 0.5. At zero temperature, T = 0, there are two
critical endpoints, namely ρc = 0 and ρc = 1, where
the model undergoes an insulator to superconductor
transition.

In a strictly two-dimensional superconductor, thermal
fluctuations will destroy “true” long-range order for all
T > 0, but a KT transition may still separate two phases.
The low temperature phase is characterized by a finite su-
perfluid density and correlations that decay algebraically
with distance. In a finite, periodic lattice, the correla-
tions might well level off similar to a “conventional” phase
transition, thus enabling us to study effects of a “quasi-
conventional” transition even in 2D, with a size-dependent
critical temperature. A proper scaling leads in fact to the
“real” KT temperature [15]. We will make use of this (in a
strict sense) “size” effect when we study the temperature
evolution of the spectral properties of a 2D system.

In addition to the density-driven transitions at fixed
U there are also interaction driven transitions at fixed ρ.
These have been discussed earlier on from a phase transi-
tion point of view [10]: as a function of coupling strength
U and fixed ρ there is a phase transition line with critical
endpoints U = 0 and U → ∞. At T = 0 a normal metal
to superconductor transition occurs at U = 0, while for
U →∞ there is a superconductor-localization (insulator)
transition. In the strong coupling regime this model can
be mapped onto hard core bosons on a lattice, in which
Cooper pairs are treated as conserved particles obeying
Bose statistics.

The nature of the phase transition is quite different
in the two limits: in the weak coupling, BCS-like limit
a formation of Cooper pairs and their condensation takes
place simultaneously at Tc. A first deviation from this sce-
nario is usually described in terms of superconducting fluc-
tuations. In the preformed pair (BEC) regime, however,
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the pair formation at T ∗ and their condensation at Tc
are independent processes. T ∗ and Tc are widely sepa-
rated, with T ∗ being only a characteristic energy scale,
not a phase transition temperature. For T > T ∗ the pairs
are thermally dissociated. In the weak coupling limit, be-
low Tc, we have a BCS-type condensate of strongly over-
lapping Cooper pairs. Thermodynamics and Tc are deter-
mined by single particle excitations (broken Cooper pairs,
quasi-particles). In the opposite, strong coupling regime
one has a Bose condensate of tightly bound local pairs,
and thermodynamics and Tc are governed by the collec-
tive modes. For a review see e.g. [16], the crossover has
been studied by a series of authors [2,8–11,16–25].

3 Technique

We present numerical studies of the described model us-
ing a particular type of quantum Monte-Carlo (QMC)
method, the temperature dependent QMC formulation in
the grand canonical ensemble (after Hirsch et al. [26–29]).
We emphasize that the QMC approach has the potential
to treat these types of strongly correlated systems, allow-
ing us to go far beyond certain approximative methods. It
provides an approximation-free, numerically exact ansatz
(besides controllable statistical errors), unlike most stan-
dard analytical techniques, and yields information about
systems much larger than those accessible by exact diag-
onalization algorithms. The QMC method uses the Suzu-
ki-Trotter and the Hubbard-Stratonovich transformation
to “break up” the quantum-mechanical many-particle sys-
tem. Applying these methods to the attractive Hubbard
model frees us from the central drawback of fermion QMC
calculations, the so-called “sign problem”. This allows us
to perform reliable and stable calculations over a vast pa-
rameter range

To extract spectral properties of the Hubbard model
we retrieve time-dependent correlation (Green’s) func-
tions (in imaginary time), which may be written

Gσ(i− j, τ) = −〈Tτciσ(τ)c†jσ(0)〉 . (3)

As we are merely interested in dynamical properties at fi-
nite temperatures, we restrict ourselves to the evaluation
of this quantity in the grand canonical algorithm; a scheme
for the application in the T = 0-formalism projector QMC
was introduced by von der Linden [30] and applied in
[27]. The analytic continuation seeks to extract real fre-
quency, dynamical information from these imaginary-time
correlation functions computed in QMC simulations. The
imaginary-time Green’s functions G(k, τ) in k-space are
intimately connected to the spectral function A(k, ω) via

G(k, τ) =


−

∫ ∞
−∞

dω
exp(−ωτ)

exp(−βω) + 1
A(k, ω) if τ > 0

+

∫ ∞
−∞

dω
exp(−ωτ)

exp(+βω) + 1
A(k, ω) if τ < 0

(4)

from which we can easily obtain the density of states as a
summation over all k-states:

N(ω) =
1

N

∑
k

A(k, ω). (5)

We seek these spectral densities because linear-response
theory relates these functions to experimentally measur-
able quantities.

But, these simple equations pose a serious problem: the
correlation functions are easy to obtain, but it is rather dif-
ficult to extract the spectral properties from the computed
QMC data because an analytic continuation, or rather
an inverse Laplace transformation from imaginary to real
time, is required. This inversion of QMC data (and usu-
ally of all statistically computed data) is extremely nu-
merically illposed due to two obvious reasons: data are
available only for a limited set of imaginary times and the
data are usually more or less noisy. As a consequence, the
solution might not be unique in general.

The method of choice is the maximum entropy (Max-
Ent) ansatz, as proposed by Gubernatis, Jarrell and co-
workers [31,32] for a similar type of data. The method
we used to obtain the presented information is a slight
variation of this ansatz after von der Linden’s work [30].
The MaxEnt technique approaches statistical data anal-
ysis within the concepts of conditional probabilities (Ba-
yesian logic), where the spectral density is regarded as
a probability function, and what is extracted from the
data is the most probable spectral density [31]. Unique
about the MaxEnt approach is the specification of the
prior probability function of the solution in terms of the
information-theory definition of entropy.

4 Results

In the following section we will discuss our results for
the density of states N(ω), the k-resolved spectral den-
sity A(k, ω) and the band structure Ω(k, ω). We concen-
trate on three different parameter sets in the intermediate
coupling (crossover) regime:

1. U/t = 4, ρ = 0.25 (“quarter-filling”) at N = 16× 16,
2. U/t = 6, ρ = 0.4 (close to half-filling) at N = 16× 16,
3. U/t = 8, ρ = 0.1 (low-density limit) at N = 10× 10.

Additionally, to allow a comparison along the U / fixed
ρ-axis, we provide some data for two further parameter
sets at only one fixed temperature value T/t = 0.5: U/t =
4.0, ρ = 0.4 and U/t = 8.0, ρ = 0.4.

These systems have been chosen, since they allow us
to present a wide overview on the behavior in the inter-
mediate regime. Simultaneously, we can use our compu-
tational resources in the most economical way. The sys-
tem size 16 × 161 represents the uppermost system size
giving reasonable computer times for this type of simu-
lation (we use single nodes of an IBM SP2 system), i.e.
giving us still the chance to produce excellent statistics

1 Periodic boundary conditions are applied.
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(i.e. long enough runs to reduce statistical noise). For the
low-density (U/t = 8, ρ = 0.1) run we even lowered the
size in favor of an enlarged number of independent MC
bins and prolonged Markov chains, and thus even smaller
statistical errors. The reason is that for ρ → 0 the Max-
Ent procedure becomes unusually difficult, whereas for
larger U the statistical fluctuations along the MC time
axis increase and thus we need longer runs to produce
statistical error bars comparable to the lower U simula-
tions. Of particular interest is certainly the regime in pa-
rameter space close to half-filling, since there almost all
techniques besides QMC/MaxEnt fail to produce reason-
able results. The critical temperatures of the three sys-
tems are approximately in the same range2, for example,
Tc/t(U/t = 4.0, ρ = 0.25) ' 0.11. A KT scaling analysis
of the QMC data similar to the one proposed by Moreo
et al. [15] yields for TKT a slightly lower value, as con-
firmed by a recent analysis of enormously large lattices
(1282) using a T -matrix type of approximation [33]. On
the other hand, we present for U/t = 8.0 data in the low
density regime ρ = 0.1, since in this case we find at least
some results from other methods [13,18,34]. It allows us
to compare and interpret our findings. Using a phase dia-
gram for this model, Figure 1, which has been presented
in detail in an earlier publication [10], we would classify
these parameters into three regimes:

– Regime 1, U/t = 4.0, lies on the BCS-side of the Tc(U)
curve, very close to the maximum;

– Regime 2, U/t = 6.0, lies on the BEC-side, very close
to the maximum, and, thus, both 1 and 2 are deep
inside the crossover regime. The Tc’s of regime 1 and
2 are practically identical;

– Regime 3, U/t = W = 8.0 (with W being the band-
width of the noninteracting system) is deeper inside
the preformed-pair (BEC) regime, even given the fact,
that the electronic filling is only ρ = 0.1.

We will discuss results for the density of states, then we
will switch to the k-resolved spectral density, which will
be subsequently used to draw a band structure. Finally
we will plot k-space patches to discuss the evolution of
the spectral properties in different regions of momentum
space. Comparisons with results from other techniques, in
particular BCS, will be given at the appropriate sections.

4.1 Density of states N(ω)

To start this section on QMC results for the density of
states (DOS) we will present initially a non-QMC result:
Figure 2 shows the density of statesN(ω) for a “free”, non-
interacting system and a system with a finite coupling,
treated in the simple BCS approach,

E2(k) = ε2(k) +∆2(k), (6)

with ∆ being an s-symmetric BCS gap function. The free
system shows the usual 2D lattice system density of states,

2 Technically, these temperatures can be reached by our
stabilized QMC algorithm.
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Fig. 2. Density of states N(ω) using T = 0 BCS-theory, elec-
tronic filling ρ = 0.25, free system, U = 0 (dashed line), and
superconductor U 6= 0 (solid line). The calculation has been
done on a lattice.
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Fig. 3. Density of states N(ω), QMC, coupling strength U/t =
4.0, electronic filling ρ = 0.25, lattice size N = 16×16, periodic
boundary conditions.

with a van Hove singularity due to the characteristic sad-
dle point. In contrast to the free system, the BCS result
gives a gap structure around the chemical potential µ (i.e.,
at ω − µ = 0), with the appearance of characteristic “co-
herence” peaks at the edge of the gap. These coherence
peaks will be discussed in detail in a subsequent section.
Despite of the usual thermal broadening for T > 0, these
two curves characterize the DOS within the BCS mean-
field approach. The appearance of a gap is intimately con-
nected to the superconducting regime.

Figure 3 presents similar data obtained by QMC for
three different temperatures (the band filling is chosen
again to be ρ = 0.25). Here we find already a rather
different behavior: for quite high temperatures (approx.
5Tc) an initially small “deformation” of the DOS around
the chemical potential begins to form, which, on lower-
ing the temperature, develops into a “pseudo-gap” like
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Fig. 4. Density of states N(ω), QMC, U/t = 6.0, ρ = 0.4,
N = 16× 16.
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Fig. 5. Density of states N(ω), QMC, U/t = 8.0, ρ = 0.1,
N = 10× 10.

dip. At T/t = 0.1 the system has reached the supercon-
ducting regime (Tc/t = 0.11), the gap is fully developed
down to zero, and – characteristic for the superconduct-
ing state and similar to the BCS DOS – the typical peaks
at the edge of the gap are present. Going to Figure 4
and thus increasing the coupling strength to U/t = 6.0
marks the onset of a crossover to a qualitatively different
situation: a large pseudogap evolves already at high tem-
peratures T/t > 0.5, but still the gap only “touches” zero
and fully develops around the chemical potential close to
Tc/t ≈ 0.14, with the characteristic peaks at the edges
of the gap starting to form. Due to the fact that the fill-
ing is close to halffilling it is hard to distinguish the peak
located at positive frequencies from the remainder of the
van Hove singularity, but there is a strong enhancement
visible around Tc. Moreover, comparing Figure 5 with
Figures 3 and 4 we see that the gap is already fully devel-
oped in the normal state far above Tc (see T/t = 0.2-curve,
Tc/t ≈ 0.1).

Additionally to the QMC- and BCS-DOS we include
with Figure 6 a DOS for the 2AHM following the approach
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Fig. 6. Density of states N(ω), Schmid’s ansatz [35] for the
2AHM, ρ = 0.4. The calculation uses a noninteracting density
of states obtained for a discrete lattice.

introduced by Schmid [35] and later on reproduced and ex-
tended by Tchernyshyov [20] ([36] follows a similar argu-
mentation). Their approach is of particular interest, since
these authors studied the 2AHM assuming that supercon-
ducting long-range order is suppressed by strong 2D fluc-
tuations. This is in fact true in a strict sense in the thermo-
dynamic limit, as discussed earlier. In the regime below a
BCS critical temperature, which now serves only as a pair
formation scale, they find still a pseudo-gap (i.e. a sup-
pression of the DOS at the chemical potential). But now
the gap has a rather “unconventional” V -shaped form,
normally attributed only to d-wave superconductors. Re-
mind that the system under investigation is nevertheless
still an s-wave superconductor. This pseudogap is only
due to fluctuating pairs (Tchernyshyov [20] calls them
“slow” fluctuations), and resembles the above-Tc pseudo-
gap in Figure 3. Nevertheless, with increasing coupling
strength U this picture becomes more and more inappro-
priate (U/t → ∞ would cause an infinitely large fully
developed gap at any temperature, with tightly bound
pairs).

4.2 Spectral functions A(k, ω)

After describing results for the density of states N(ω),
which is equal a k-summation over the spectral func-
tion A(k, ω), we will now focus on the k-resolved data.
Sections 4.3 and 4.4 will discuss large k-space regions
in detail. Initially we focus on two regimes of particular
interest. These are the k-region which is formally associ-
ated with the Fermi surface kF and secondly the k-region
around the zone corners (π, π) and equivalent points. In
fact, kF is well defined only in the noninteracting and
weak coupling regime, e.g. via the jump in n(k) at kF .

We would like to remark that the discussion of small
finite lattices does not allow a decisive comment on Fermi-
liquid versus no-Fermi-liquid behavior (e.g. on the basis of
an analysis of the momentum distribution) in this inter-
mediate regime. We will use the expression “Fermi edge”
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Fig. 7. Spectral function A(k, ω) for k = (3π/8, 3π/8) and
temperatures above Tc, U/t = 4.0, ρ = 0.25.
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T/t
0.0 1.0 2.0

Fig. 8. “Temperature axis” for U/t = 4.0, ρ = 0.25: whereas
Tc ≈ 0.11t, the light shaded area marks the temperature win-
dow above Tc, where at least a second band is detectable
(“pseudogap-regime”), and the narrow, dark shaded region
gives the temperature, where the spectral function peak at
the filling edge (“Fermi edge”) starts to split (“fluctuation
regime”).

in the following text in a very loosely defined sense, which
usually only indicates the “filling edge”, i.e. E − µ = 0.

Figure 7 presents data at k-points (3π/8, 3π/8) and
equivalent, which are as close as possible to the Fermi
edge position of the non-interacting system for ρ = 0.25.
There, for intermediate coupling U/t = 4.0 the system
behaves qualitatively rather close to what we expect from
the BCS theory, with some modifications around Tc. At
high temperatures we find only one single peak, which is
finally splitted by a gap around ω− µ = 0 below Tc. Here
in our QMC results for the 2AHM this splitting initially
starts in a rather small temperature window above Tc,
which is probably defined to a large extent by thermal
fluctuations. While at kF there is only one single peak at
e.g. T/t = 0.5, we would like to point to the fact that
we have already two or more peaks in other k-regions (we
will comment on that in Sects. 4.3 and 4.4). The splitting
of the single peak at kF into two maxima separated by
a (superconducting) gap causes a shift of spectral weight
away from ω − µ = 0 and, thus, a pile-up of two rather
sharp “resonances” at the edge of the gap. This was al-
ready seen in the discussion of the density of states N(ω).
The BCS theory would give an ungapped, single peak at
the Fermi egde down to Tc, with a gap ∆(T ) emerging
only below Tc. An enhancement of the coupling strength,
Figure 9 (due to the different value of ρ we have cho-
sen another k-vector close to the assumed “Fermi” edge)
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Fig. 9. Spectral function A(k,ω) for k = (3π/4, 0) and tem-
peratures above Tc, U/t = 6.0, ρ = 0.4.

shows, that there the splitting starts to form at much
higher temperatures (in fact, almost an order of magni-
tude higher than for U/t = 4.0). The “fully” developed
gap can still be found only at T ≈ Tc. Again a pile-up of
spectral weight at the gap edges can be detected. When
we go to even larger U -values this picture changes quali-
tatively: the peak structure will be completely gapped at
higher and higher temperatures far above Tc (see, e.g. the
U/t = 8.0 band structure in Figs. 15 and 18), with the
extreme limit of an infinitely wide gap at all temperatures
for U/t→∞.

Furthermore, the region around the zone corners is of
peculiar interest, in particular in the temperature window
T ∗ < T < Tc. Figure 10 shows A(k, ω)-data for the zone
corner k = (π, π) itself as well as for its closest neighbors
along the (discrete) lattice axes and the diagonal. The
data are obtained at T/t = 0.5t. In the left column of
Figure 10 we keep the electron density fixed at ρ = 0.4 and
increase the coupling strength from U/t = 4 to U/t = 8,
going from top to bottom. The right column varies the
density for the upper and lower row, thus enabling us to
investigate the ρ-dependency of A(k, ω). The most striking
feature is the appearance of not only two peaks, but three
of them are visible, corresponding to at last three branches
in the excitation spectrum. “At least” refers to the fact,
that we are not able to reproduce the band structure itself,
but only the positions of spectral peaks with a weight
significantly different from zero. We would like to note
that we cannot split “very close” lying peaks, in particular
not if these peaks have a large difference in weight (i.e. a
broad peak with large spectral weight will easily “cover”
a small one in its tails).

The three peaks differ as follows: there is a large, broad
peak (its position is marked Ω1) at frequencies ω− µ > 0
(unoccupied range), a second broad one with low weight at
the opposite side of the frequency axis (occupied range),
marked Ω2, and finally a third one, located close to the
position of the chemical potential. Its position will be re-
ferred to as Ω3, it is e.g. for U/t = 6.0, ρ = 0.4 located al-
most exactly at the chemical potential (i.e. Ω3(π, π) = 0).
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Fig. 10. Spectral function A(k,ω), k-vectors around (π, π), for T/t = 0.5 and different U-, ρ-values.

Ω1, Ω2 and Ω3 shift as a function of doping as well as
coupling (the coupling strength dependency is plotted in
Fig. 11), but for all systems shown in Figure 10 there are
clearly three peaks present. The spectral weight (relative
to the Ω1-peak) of the Ω3-peak is lowest in the ρ = 0.1,
U/t = 8.0 system, and largest in the ρ = 0.4, U/t = 8.0
system (there it accounts at its maximum for roughly 10%
of the total spectral weight). The position of the Ω3-peak
shifts (a) to lower frequencies if the coupling strength U
is increased and ρ = const., and (b) to lower frequencies
if the filling ρ is increased and U = const. The spectral
weight of Ω3 increases with increasing coupling strength,
and since both, the Ω2- and Ω3-line become broader and
simultaneously seem to approach each other with increas-
ing coupling strength (at least for ρ = 0.4), it will be in-
creasingly difficult to split them from each other. The ap-
pearance of a third peak (band) around the zone corners in

the normal state of the 2AHM is not totally unexpected.
Several authors, e.g. [13,37,38] among others, predict the
appearance of at least one further feature besides the es-
tablished single particle band and pair band (present be-
low T ∗, see [8]). Nevertheless, to exclude artifacts of the
finite lattice calculations, we studied the evolution of the
Ω3-peak with system size. Figure 12 shows the size de-
pendence of Ω3(π, π) for lattice sizes N between 64 and
256 sites, for a U/t = 6.0, ρ = 0.4 system at temperature
T/t = 0.3 (here we observed the strongest size dependency
among all systems under investigation). Clearly, the posi-
tion of the peak converges to a fixed value forN →∞. The
peak itself becomes even more pronounced (i.e. its relative
spectral weight allows an easy distinction from the rest of
the structure), if we increase the system size. Figures 10
and 11 give the impression, that the pseudogap opens in
this temperature regime and at k ≈ (π, π) between the Ω2
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Fig. 12. Position of the central peak Ω3 at k = (π, π) in the
band structure for U/t = 6.0, ρ = 0.4, T = 0.3 as a function of
inverse system size 1/N = 1/L2 (�); the dashed line indicates
the supposed level for L→∞.

and Ω3 peaks, not exactly at ω− µ = 0. This observation
is at least qualitatively partially consistent with the work
presented in [34]

4.3 Band structure

After having identified quite unconventional structures in
A(k, ω) in Section 4.2 we want to discuss rather extended
regions in k-space. For this purpose we plot A(k, ω) along
the triangle (0, 0) → (π, 0) → (π, π) → (0, 0) in momen-
tum space, which allows us an examination along the main
lattice directions between zone center and corner. In prin-
ciple, we would be interested in a “real band structure
calculation” for the 2AHM, which would give us all bands
and there dispersion. Using a special type of plot, we can
extract some aspects of the bandstructure from the calcu-
lation of A(k, ω). We use a gray shade coding to plot the
spectral function in the k-ω-plane, along the described k-
path. The gray shades code the value of A(k, ω), a quartic
folding form is used to get a non-linear coding (i.e. small
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Fig. 13. Band structure resulting from a BCS calculation,
E2(k) = ε2(k) + ∆2. The dashed curve corresponds to a sys-
tem where the chemical potential is close to the lower band
edge of the non-interacting system (i.e. ρ → 0), and the solid
curve represents data, where µ is deep inside the noninteracting
band.

values of A(k, ω) are strongly enhanced to visualize struc-
tures resulting from small peaks). Nevertheless, this type
of plotting gives not the full band structure, since only
branches with non-vanishing weight are visible. The reader
should keep this in mind when comparing our data with
“real” band structure calculations. As a starting point,
Figure 13 depicts a band structure for the 2AHM, result-
ing from a simple BCS dispersion formE2(k) = ε2(k)+∆2,
with a BCS gap ∆. This BCS band structure is shown for
two different values of the chemical potential, one is close
to the lower edge of the non-interacting band and the other
one corresponds roughly to quarter-filling.

In contrast, Figures 14–18 present QMC data.
Figure 14 shows the band structure (the name is used in
the following discussion as a synonym for the described
gray coded A(k, ω) plot) for U/t = 4.0, quarter-filling
ρ = 0.25 and a series of temperatures down to T ≈ Tc.
The T/t = 2.0 and T/t = 0.11 panels are the easiest ones
to describe: T/t = 2.0 � T ∗ and T/t = 0.11 ≈ Tc. At
a temperature T � T ∗ we have only one band (which
we denote, in accordance to Sect. 4.2, Ω1), corresponding
to the noninteracting system, pairs are thermally disso-
ciated. Lowering the temperature (T/t = 1.0) causes the
appearance of a second band, pairs start to form and oc-
cupy a pair band Ω2 (“two-particle bound state”) [8]. This
second band is particularly pronounced at the zone center
and zone corners. If we decrease the temperature further
down to T/t = 0.5, we see a splitting of the Ω2-band into
two distinct branches in a region around the zone corner
(π, π). This splitting starts for T/t = 0.5 at k ≈ (π, π/4),
and the region expands (visible as some kind of “bub-
ble” extending from (π, π)) if we go to lower temperatures
T/t = 0.3, T/t = 0.25. For the last temperature we find
three branches extending over the whole k-regime, besides
the immediate neighborhood of the Fermi surface vector
kF . During this process, Ω3 seems to shift towards higher
frequencies. In the regime close to the transition region
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Fig. 14. QMC band structure, U/t = 4.0, ρ = 0.25. The crosses mark low peaks which otherwise are hardly visible in this plot.
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Fig. 15. QMC band structure, U/t = 6.0, ρ = 0.4.

around Tc we get another splitting, a fourth band evolves
out ofΩ2, again initially around the zone corner. At Tc and
below, the band structure becomes “conventional” again,
the dispersion of the spectral weights is consistent with
a band structure predicted for a usual (BCS-type) super-
conductor below Tc (compare with Fig. 13).

Similar data are provided for ρ = 0.4, U/t = 6.0
(Fig. 15) and ρ = 0.1, U/t = 8.0 (Fig. 16). The evolu-
tion of the band structure is similar, despite shifts of the
particular bands due to the different filling and coupling
strength values. Figure 16 is of particular interest, since
the lower filling produces only weak many particle correla-
tions in this “dilute” system, and it is possible to make at

least qualitative comparisons to results from other meth-
ods, e.g. T -matrix calculations.

An interesting result obtained by Kagan et al. [13] is
reproduced in Figure 17. There, we show their T -matrix
band structure for a system with ρ = 0.5, U/t = 10 and
T/t = 0.1 in the normal state (their [13] approach does not
produce superconducting correlations, due to a explicit
implementation of Mermin and Wagner’s theorem [39]).
The different branches are marked gray, if the particu-
lar spectral weight is close to zero, and thus would be
invisible to our method. It is marked black, if the spec-
tral weight is non-vanishing, so that we should be able to
see the band. Unfortunately, [13] presents only data along
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Fig. 16. QMC band structure, U/t = 8.0, ρ = 0.1.
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Fig. 17. Band structure Ω(k) from a T -matrix calculation, for
ρ = 0.05, U/t = 10 and T/t = 0.1, data taken from [13]. The
grey branches mark regions of the band structure with virtually
zero spectral weight, thus, only the black parts would be “vis-
ible” in a plot using A(k, ω)-data as shown in the presentation
of the QMC “band structures”.

the diagonal. Most important and interesting for a com-
parison to our data is the fact that these authors find
a third branch resulting from the η resonance initially
proposed by Yang [38], which – using our presentation
technique – should be particularly pronounced around

k = (π, π). This mode has only a weak U -dependence.
This branch comes down in energy with increasing U , sim-
ilar to our results (see, e.g., Fig. 11). It is necessary to com-
pare the results of [13] with our QMC data taken at quite
high temperatures, e.g. T/t = 0.5, since at lower temper-
atures, e.g. T/t = 0.1, the QMC system is dominated by
superconducting correlations, as discussed before, causing
additional changes in the band structure.

Finally, in Figure 18 we present a direct comparison
between two bands for U/t = 4 and U/t = 8, both
measured at ρ = 0.4 and T/t = 0.5. This figure shows
the pronounced differences arising from the BCS to BEC
crossover. In addition to the two coupling values presented
in Figure 18 we ask the reader to consider also the upper-
most right panel of Figure 15, U/t = 6.0, ρ = 0.4, T/t =
0.5, which can be regarded as an in-between panel for
Figure 18. All three coupling values U/t = 4.0, U/t = 6.0
and U/t = 8.0 show two distinct bands in the normal
state, but only U/t = 8.0 has a large, fully developed
(pseudo-) gap around ω − µ = 0 for all k-vectors. In con-
trast, for U/t = 4.0 we find a single, ungapped peak at the
k-vectors corresponding to the “Fermi”-surface (defined
in the general sense as previously discussed). U/t = 6.0
marks somehow the crossover. Included in the right col-
umn of Figure 18 are also the corresponding k-space maps
(there coding is described in detail in Sect. 4.4). Here, the
effect of the crossover is even more easily seen: in con-
trast to the U/t = 8 case we find a clear “signature”
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Fig. 18. QMC band structure (left column), ρ = 0.4, T/t = 0.5, U/t = 4.0 and U/t = 8.0, and affiliated k-space maps (right
column).

of the “Fermi surface” (or rather its residues, signaled
by the black pixels corresponding to ungapped k-points).
Common to both cases is the “bubble” around (π, π),
where the Ω3-branch shows up, indicated by the white
patches in the k-maps.

4.4 k-space maps

After the discussion of the spectral functions and the band
structure we want to study systematically how certain fea-
tures evolve in momentum space. For that purpose we use
an unconventional approach: in Figure 19 we plot a partic-
ular type of map of the Brillouin zone ((−π, π), (−π, π)).
We use four different levels of gray shading to code the
“type” of spectral density/band structure found at a par-
ticular k-point: a black square (“k-pixel”) represents a k-
point with a fully ungapped A(k, ω) (one peak), a dark
gray k-pixel a partially developed gap (i.e. A(k, 0) 6= 0,
but two distinct maxima), a light gray k-pixel a fully
gapped spectral function, and a white k-pixel marks a
k-point, which has a spectral function having more than
two distinct peaks. Using this coding scheme we start with
a totally “black” Brillouin zone for very high tempera-
tures (T/t = 2.0), shown in the uppermost left corner of

Figure 19. This patch is equivalent to the corresponding
subpicture in Figure 14, and represents the fact that we
have only one single band at this temperature, possible
pairs are thermally dissociated.

On lowering the temperature, dark gray areas appear
at the corners of the zone around (π, π) and equivalent
points, signaling the opening of a “pseudo-gap” (i.e. a
splitting of the single peak in A(k, ω) into two peaks).
Further lowering of the temperature causes

(a) a growth of the gapped regions around (π, π);
(b) an additional “nucleus” of gapped states at the zone

center around (0, 0);
(c) finally a fully opened gap down to zero in this regions

(uppermost row in Fig. 19). The temperature, where
the initial opening of gapped k-regions is observed, will
be called T ∗ in the further context of this paper. We
would like to emphasize, that even in the case of a mod-
erate coupling strength U/t = 4, this temperature T ∗

is about 15 times higher than Tc, the superconducting
transition temperature. This is in contrast to the value
presented in Section 4.1 as well as earlier publications,
since a pure definition of T ∗ via the opening of a pseu-
dogap in the density of states is rather less sensitive
and gives a much lower temperature scale [10].
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Fig. 19. k-space maps, U/t = 4.0, ρ = 0.25. Brillouin zone (−π ≤ kx,y ≤ π) with each discrete k-point gray coded according to
the “gap state” of it’s A(k, ω). Coding scheme: black (ungapped), dark gray (two peaks, gap not fully developed down to zero),
light gray (two peaks, fully developed gap) and white (more than two peaks).
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Such an “accuracy dependency” is a typical feature of
a smooth crossover in contrast to a phase transition. It
should be stressed that the pseudogap obtained from an
analysis of the DOS is directly connected to the pseudogap
obtained from the static spin susceptibiltiy, i.e. the Knight
shift [40], calculated for the same model and parameters.

If we lower the temperature further we approach a new
regime in the k-maps, marked by the white k-pixels: we
detect in the central map of the second row (T/t = 0.5) the
appearance of k-points having three (and for even lower
temperatures four) distinct maxima in the spectral func-
tion A. This patch again should be viewed together with
the corresponding band structure, Figure 14. For temper-
atures T/t > 0.5 we had only two distinct branches, but
now the lower one of the two bands starts to split up into
two bands in a region around (π, π) and equivalent points
(the “bubble” splitting Ω2 corresponds to the white k-
pixels in the k-maps). It seems important to note that
this splitting starts in a similar k-region where the initial
formation of a second band Ω2 (i.e. the opening of the
pseudo-gap) was observed.

Going to temperatures T/t ≤ 0.2 we find that

(a) after an intermediate extension the white regimes
finally disappear. The spectral weights on several of
the peaks vanish, but not necessarily the bands itself;

(b) only a narrow “ring structure” of not fully gapped
k-points remains, reflecting the exact position of the
“Fermi surface” (defined rather in terms of a drop in
the momentum distribution n(k) than in a strict sense,
as discussed earlier). This “ring structure” vanishes
only close to and below Tc = 0.11t. Below Tc, a ho-
mogeneous patch is obtained. It is important to note
that for this U -value the final opening of the gap along
the Fermi surface happens only at Tc (+ a possible fluc-
tuation window), resembling remnants of a BCS-type
of transition (we again refer also to Fig. 8). In a con-
ventional superconductor the so-called “Fermi-surface
instability” at Tc is a characteristic feature of a BCS-
type of theory. The fact that the gap along the Fermi
surface seems to open at different temperatures for dif-
ferent directions is due to the finite lattice, which gives
rise to only a finite number of k-points. Obviously, for
the chosen filling ρ = 0.25 the Fermi surface lies in
between of two k-points along the main axes, whereas
it “hits” exactly along the diagonals.

Here we are really in a crossover regime, since we have
a formation of a pseudogap, a second branch in the band
structure and thus pairs at temperatures far above Tc, but
a full opening of the gap along the Fermi surface takes
place only at approximately Tc. This is particularly emi-
nent in Figure 18, where we compare U/t = 4 and U/t = 8,
both on the level of band structure and k-map plots (left
and right columns, respectively). In the normal state sys-
tem for U/t = 4.0 the “Fermi surface” is again clearly
marked by the black k-pixels (similar to the T/t = 0.5-
panel in Figure 14, but larger due to ρ = 0.4 in Figure 18
in contrast to ρ = 0.25, just as expected). In contrast, we
have at the same temperature for U/t = 8 a fully gapped

system. The extension of the white areas at the zone cor-
ners is identical, at the zone center we are not able to
detect a splitting into more than two bands for U/t = 8.0
(and similarly for U/t = 6.0).

5 Discussion and conclusions

To summarize our results we have investigated the follow-
ing problem.

We studied the 2AHM in the crossover regime between
U/t = 4 and U/t = 8, which is – using Figure 1 as an illus-
tration – just around the maximum of Tc(U). A Tc-curve
(or rather in a strict sense a TKT -curve) can be obtained
by e.g. QMC studies or even simpler using a combination
of a BCS approach and a KT argumentation, as done by
Denteneer et al. [41]. The latter gives a qualitatively cor-
rect picture (quantitatively it provides at least a reason-
able upper bound), which allows an interpolation between
the weak coupling BCS regime (with a monotonically in-
creasing Tc) and the strong coupling BEC regime (with a
monotonically decreasing Tc). Such a study of the phase
diagram has been published e.g. in [10]. Here we want
to go one step further and investigate the effects of this
crossover on the density of states and band structure. First
results have been published earlier, e.g. in [8] using QMC
simulations, but also for example in [17] and other stud-
ies. Our presentation widely extends these previous data,
and focuses in particular on the effects of the crossover on
the density of states, the spectral densities and the band
structure. We are able to show how remnants of the BCS
concept (like a kind of “Fermi surface”) “survive” into the
crossover regime, whereas also precursors of the BEC (or
better “preformed pair”) regime appear quite early (like
the second band). We notice that – although BCS theory
is strictly valid only in the very limit of U → 0 (and thus
Tc → 0) at the superconductor to normal conductor end-
point of the Tc(U) phase line – remnants of a BCS/mean
field type of transition are visible up to quite large values
of U (U/t ' 4). Similarly interesting is the fact that the
other endpoint of the phase transition line Tc(U), the su-
perconductor – insulator point at U → ∞, has an even
bigger bassin of attraction. It starts at U/t→∞ and goes
down well below the maximum of the Tc(U) curve into the
BCS regime (taking the appearance of a second branch in
the excitation spectrum as a marker). This confirms our
earlier findings [42] analyzing an “Uemura”-type of plot
for the 2AHM. The presented concepts have been studied
over a wide parameter range, using simulations on rather
large systems with a state-of-the-art QMC/MaxEnt simu-
lation tool. It is difficult to decide on the origin of some of
the observed effects (preformed, tightly bound pairs versus
fluctuations or a combination) from the spectral properties
only, but we will try to extend and supplement the pre-
sented data with measurements of other thermodynamic
quantities as soon as possible. A really striking discovery
is the appearance of more than two bands in a certain
temperature regime T ∗ > T > Tc.



J.M. Singer et al.: Spectral properties of the attractive Hubbard model 51

We would like to acknowledge interesting discussions with M.H.
Pedersen, H. Beck, R. Frésard, M. Capezzali, R. Micnas, J.
Engelbrecht and V. Loktev on the 2AHM and the crossover
topic, P. Schwaller and J. Osterwalder on spectroscopy in
“real” cuprates and H.-G. Matuttis on MaxEnt and QMC. This
work was supported by the Swiss National Science Foundation.

References

1. See e.g., J.R. Schrieffer, Theory of Superconductivity
(Addison-Wesley, Reading, 1988).

2. See e.g., J. Blatt, Theory of Superconductivity (Academic
Press, New York, 1964); R. Micnas, J. Ranninger, S.
Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).

3. H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M.
Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, J.
Giapintzakis, Nature 382, 51 (1996); H. Ding, J.C.
Campuzano, M.R. Norman, M. Randeria, T. Yokoya, T.
Takahashi, T. Takeuchi, T. Mochiku, K. Kadowaki, P.
Guptasarma, D.G. Hinks, cond-mat/9712100.

4. A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H.
Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996).

5. P. Schwaller, T. Greber, J.M. Singer, J. Osterwalder, P.
Aebi, H. Berger, L. Forró (unpublished).
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